Care after cardiac arrest

Targeted Temperature Management (TTM)

  • 26 RCTs from 2002 to 2019 + TTM2 ongoing and HYPERION trial to be released soon
  • Following 2 RCTs in 2002 (Bernard et al + HACA) the use of TTM T32-34C became widespread
  • Improves neurologically intact survival but the mechanism is uncertain
  • T36C became widely used after TTM trial (Nielsen et al, 2013) found no difference T33C vs. T36C
  • Controversies/uncertainties regarding patient selection, target temperature, timing of initiation, duration, and method

Coronary angiography

  • Ischemic heart disease is the most common cause of OHCA
  • STEMI: immediate coronary angiography
  • Without STEMI: ER “pit-stop” for a fast diagnostic workup (history, TTE/TEE, CT scan, lab tests)
  • PRO: diagnosis, early PCI reduces infarct size, heamodynamic stabilization, improves LVEF, TTM during PCI
  • CON: overlook other causes, heparin, delayed TTM, lot of multidisciplinary resources, infrastructure, logistics needed

Heamodynamic management

  • Anoxic brain injury impairs brain perfusion autoregulation
  • Targeting MAP > 70 mmHg
  • Lower HR = better neuro outcomes
  • Focus on CO and lactate
  • “Physiologic”: MAP>70mmHg, bradycardic, moderate vasopressors, urinary output >0.5 ml/kg, lactate < 2 mmol/l after 12h, low/normal CI, normal SvO2, complete/adequate reperfusion
  • “Phatologic”: MAP<60mmHg, high vasopressors, urinary output <0.5 ml/kg, lactate>3-4mmol/l after 12h, recurrent CA, tachycardia/rapid AF, low CI/SvO2, consider IABP/ECMO.


  • rapidly detect ABCD abnormalities and trigger adequate responses
  • A+B: mantain normoxia/normocarbia
  • C: be aware of post-resuscitation myocardial dysfunction and sepsis-like syndrome,
    • monitor: ECG, arterial line, lactate using ABG, CO, fluid responsiveness
  • D: EEG for prognostication/seizure detection, benefit of aggressive antiepilectic treatment??
    • monitor: body T, motor response, brainstem reflexes, pupillometry, seizures, rSO2??

Patient outcome related to multi-organ failure

  • Organ dysfunction is common after cardiac arrest and associated with worse outcome
  • Full spectrum of multiple organ failure (heart, kidney, liver, brain) must be considered to reduce morbidity, increase survival and optimize the use of healthcare resources
  • End-of-life care must be considered: withholding/withdrawing all invasive and supportive care as a collegial process between team and family

Is there a place for Vitamin C?

  • Vitamin C is the primary antioxidant
  • Ischemia and reperfusion injury causes damage to the hearth and brain increasing mortality
  • After CA plasma levels of Vitamin C are low reducing protection against oxidative stress (massive consumption?)
  • In preclinical studies vitamin C decreased myocardial damage, improved survival/neuro outcome
  • Vitamin C in Post-cardiac Arrest (VITaCCA) RCT will determine if early high doses of vitamin C improve organ function after cardiac arrest. Identifier: NCT03509662